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The extended Korteweg-de Vries equation which includes nonlinear and dispersive 
terms cubic in the wave amplitude is derived from the water-wave equations and the 
Lagrangian for the water-wave equations. For the special case in which only the 
higher-order nonlinear term is retained, the extended Korteweg-de Vries equation is 
transformed into the Korteweg-de Vries equation. Modulation equations for this 
equation are then derived from the modulation equations for the Korteweg-de Vries 
equation and the undular bore solution of the extended Korteweg-de Vries equation 
is found as a simple wave solution of these modulation equations. The modulation 
equations are also used to extend the solution for the resonant flow of a fluid over 
topography. This resonant flow occurs when, in the weakly nonlinear, long-wave 
limit, the basic flow speed is close to a linear long-wave phase speed for one of the 
long-wave modes. In  addition to the effect of higher-order terms, the effect of 
boundary-layer viscosity is also considered. These solutions (with and without 
viscosity) are compared with recent experimental and numerical results. 

1. Introduction 
Many equations describing nonlinear wave motions have exact solutions for steady 

uniform progressive waves. However, such steady waves do not usually exist and 
methods are needed to study modulated wavetrains. One such method which has had 
wide application in the study of slowly varying wavetrains is the averaged 
Lagrangian method of Whitham (1965a, b,  1967, 1974). This method involves 
deriving modulation equations for slowly varying wave properties such as amplitude, 
mean height, frequency and wavenumber from a Lagrangian for the wave system 
averaged over a period. This method has been successfully applied to B wide variety 
of nonlinear wave systems, in particular the Korteweg-de Vries equation (Whitham, 
1965b, 1974). The modulation equations for the Korteweg-de Vries equation are 
found to form a third-order system of hyperbolic equations for the amplitude, 
wavenumber, frequency and mean height. Since the modulation equations are 
hyperbolic, the cnoidal wave solution of the Korteweg-de Vries equation is stable to 
small modulations. A particular solution of these equations, a simple wave solution, 
was found by Gurevich & Pitaevskii (1974), this solution corresponding physically to 
an undular bore. This undular bore solution was found to be in good agreement with 
numerical solutions of the Kortewegde Vries equation by Fornberg & Whitham 
(1978). It is an extension of this work to an extended Korteweg-de Vries equation 
which forms the first portion of the present work. 

The Korteweg-de Vries equation arises in the description of weakly nonlinear, long 
wavelength water waves when terms of second order in wave amplitude in the water- 
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wave equations are included (see Whitham 1974). In $2, the extended Korteweg-de 
Vries equation, which includes terms of third order in wave amplitude, is derived in 
two ways; the first is an extension of the derivation of Whitham (1974) of the 
Korteweg-de Vries equation from the water-wave equations and the second is from 
the Lagrangian for the water-wave equations derived by Luke (1967). S’ ince a 
Lagrangian for the extended Korteweg-de Vries equation is required to apply 
modulation theory, the second method of derivation is useful as it leads directly 
to this Lagrangian. Deriving the modulation equations for the full extended 
Korteweg-de Vries equation, 

(1.1) 

where el, c2, c3 and c4 are constants and a 4 1 is the amplitude-to-depth ratio, 
presents significant algebraic difficulty. In $2 it is shown that the extended 
Kortewegde Vries equation containing only the higher-order nonlinear term and 
not the higher-order dispersive terms, 

2 
37t + 637% + 37zzz - ac137 37, +a%! r r z x x  + ac3 ?lz 37ZX + ECP 37xzzzz = 0, 

Tt + 6772 + T x z z  - 7%2 = 0, (1.2) 

can be transformed to the Korteweg-de Vries equation for a 4 1. The modulation 
equations for (1.2) then follow from the modulation equations for the Korteweg-de 
Vries equation. These modulation equations thus form a third-order system of 
hyperbolic equations for the mean height, wavenumber and amplitude, as do the 
modulation equations for the Korteweg-de Vries equation. A higher-order undular 
bore solution is found as a simple wave solution of these modulation equations and 
is compared with the numerical undular bore solution of (1.2). 

The modulation equations for (1.2) are used in $3  to derive the higher-order 
solution for the resonant flow of a fluid over topography. The method of solution 
parallels that of Smyth (1987) for the Korteweg-de Vries equation. This flow occurs 
when the basic flow speed is near one of the linear long-wave speeds for one of the 
long-wave modes, so that energy cannot escape from the topographic forcing a t  the 
linear group velocity and nonlinear effects become important (indeed dominant) in 
the resulting flow. This resonant flow was first derived experimentally by Huang 
et al. (1982) and since then has been considered both theoretically (Wu & Wu 1982; 
Akylas 1984; Cole 1985; Lee 1985; Grimshaw & Smyth 1986; Melville & Helfrich 
1987; Smyth 1987, 1988; Wu 1987; Lee, Yates & Wu 1989) and experimentally 
(Baines 1984; Lee 1985; Melville & Helfrich 1987; Lee et aZ. 1989). Both 
experimentally and theoretically, it is found that the resonant flow consists of three 
distinct regions (see figure 2). Upstream of the forcing, there is an advancing train of 
waves, these waves being generated a t  the forcing. Downstream of the forcing, there 
is a lengthening depression of nearly constant depth followed by a modulated 
wavetrain which brings the flow back to zero. Akylas (1984), Cole (1985), Lee (1985) 
and Grimshaw & Smyth (1986) showed that to second order in wave amplitude, this 
flow can be described by the forced Korteweg-de Vries equation. Melville & Helfrich 
(1987) showed that when third-order nonlinear terms are included, the flow is 
governed by the forced extended Korteweg-de Vries equation, 

Most of the theoretical work done to date has involved numerical solutions. 
Grimshaw & Smyth (1986) approximated the upstream wavetrain by a series of 
constant amplitude Korteweg-de Vries solitons and using mass and energy balance 
arguments, found expressions for the soliton amplitude and spacing which agreed 
well with numerical solutions near exact linear resonance. For the downstream 
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wavetrain, the undular bore solution of the Korteweg-de Vries equation was used 
and good agreement was found with numerical solutions over the entire resonant 
range. Smyth (1987) improved the upstream solution by showing that it is a partial 
undular bore. The upstream wavetrain is then a modulated cnoidal wave a t  whose 
leading edge, the modulus squared m = 1, so that it is essentially a train of solitons 
there, and a t  whose trailing edge at  the forcing, m = m,, where 1 > m, 2 0. In  a full 
undular bore, m = 0 a t  the trailing edge of the bore. Waves of modulus squared m, 
are chosen so that the expansion fan for the simple wave (undular bore) solution of 
the modulation equations for the Korteweg-de Vries equation has zero velocity a t  
the forcing and hence the entire wavetrain propagates upstream. This upstream 
solution was found to be in good agreement with numerical solutions for the entire 
resonant range. In  $3, the resonant flow solution of the forced extended Korteweg-de 
Vries equation will be found using the method of Smyth (1987) and the results 
compared with the experimental results of Melville & Helfrich (1987). 

The difference between the experimental and theoretical amplitudes of the waves 
in the resonant flow is about 10%. One of the motivations for considering higher- 
order corrections to the Korteweg-de Vries equation is to determine the effect of 
these higher-order terms relative to the effect of viscosity in explaining this 
difference. Smyth (1988) considered the effect of viscosity and found that it accounts 
for a portion of the difference between the experimental and theoretical results. By 
solving the full forced extended Korteweg-de Vries equation numerically, it is found 
in $4 that the effects of viscosity are more important than the effects of higher-order 
nonlinearity and dispersion in accounting for the differences between experimental 
and theoretical results. 

2. Extended Korteweg-de Vries equation 
2.1. Derivation of the equation 

The Korteweg-de Vries equation is obtained as an extension to the linear shallow- 
water equations when the effects of the next higher-order nonlinearity and dispersion 
are included, these terms being O(a2)  where a is a measure of the amplitude. The 
extended Korteweg-de Vries equation, obtained by including nonlinear, dispersive 
and mixed nonlinear-dispersive terms to O(a3),  will be derived in two ways in the 
present section; the first is an extension of the derivation of Whitham (1974) from 
the water-wave equations and the second is from the Lagrangian for the water-wave 
equations found by Luke (1967). The second derivation is useful as to apply the 
averaged Lagrangian method of Whitham (1974) to the extended Korteweg-de Vries 
equation, a Lagrangian for this equation is needed. 

Let us consider small-amplitude, long-wavelength, two-dimensional waves 
propagating on the surface of an incompressible, inviscid, irrotational fluid of 
undisturbed constant depth h. All space variables will be non-dimensionalized by h 
and the time will be non-dimensionalized by (hg-l)i, where g is the acceleration due 
to gravity. The horizontal coordinate will be denoted by X, the vertical coordinate 
by Y ,  the time by T, the velocity potential by Q, and the surface elevation by N .  Since 
the waves are assumed to be of small amplitude and long wavelength, we set 
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where 
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p = (y, 1 
a being a typical wave amplitude and 1 a typical wavelength. The water-wave 
equations then become (see Whitham 1974) 

P $ x x + $ Y Y = 0  ( O <  y <  I f a q  

Tt  + a # x  92 -P'$y = 0 1 
7 + $t + :a$: + :ap-'#$ = 0 j 

$ y = ~  on Y = O ,  j 

on Y = l+ay.  

The velocity potential $ is expanded as a series in P as 

m m  2 2 m f  

which satisfies Laplace's equation and the boundary condition at Y = 0. Substituting 
(2.4) into the surface boundary conditions of (2.3) yields on retaining terms up to and 
including O(a2,  up, p 2 ) .  

3 2 2  

3 2 2  2 2  ] (2 .5 )  
7, +fXb + a 7 1 T x  + i P T X X X  -@ 71 71x + aPC%z Vzx + 3 l T x x x )  + &P2Txxx*x  = 0, 

Tt  +fxz + 2aTTx - @Txxz - P T T x  + @(hTX T x x  - i9lTxxx) - ;isp T z x z x x  = 0. 

The function fx is now chosen so that both of (2.5) are the same equation. Retaining 
terms to O(a,p), Whitham (1974) found 

f =v- '  4"T2 + ~ P r I X X Z ~  (2.6) 

which gives the Korteweg-de Vries equation. For the extended equation (2.5), which 
includes terms of next highest order, we find 

(2-7) f = 7 - -  1 2 3  :.rz + @ T x m  + Kia T + ~ P ( & :  + i T T z x )  + & P T X X X 5 >  

which gives the extended Korteweg-de Vries equation 

3 2 2  Tt  + T x  + %TTx + iPTxxx - ija 3 T x  + .P(%rx T x x  + &TTxxx) + %P2T5xxx.5 = 0. (2.8) 

This extended equation contains a higher-order nonlinear term of O(a2) ,  higher-order 
mixed nonlinear-dispersive terms of O(a,8) and a higher-order dispersive term of 
0(p2) .  As usual, to balance the nonlinear and dispersive terms, we assume a = p. An 
extended Korteweg-de Vries equation can also be obtained for the more general case 
of weakly nonlinear long waves in a stratified fluid and an equation similar to (2.8) 
will be obtained, with different coefficients (see Gear & Grimshaw 1983). 

The extended Kortewegde Vries equation (2.8) can also be obtained directly from 
the Lagrangian for the water-wave equations, this Lagrangian being found by Luke 
(1967). Using the scalings (2.1), this Lagrangian becomes 
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On substituting the expansion (2.4) for $ into this Lagrangian and retaining terms 
of O(a3, up2, a2P), we find 

L 
~ = f t + a T f t  + h 2 - i P f x x t  ++f :-@PTfxxt + i a P f : x + & P f x x x x t  
pgha 

+ ia2Tf: - & P f X  fxxx - + a 2 P r 2 f x x t  + &aP2Tfxxxxt + h " T f  :x - &aP%x f x x x x  

- + a 2 P T f x x x f x  + ~ a P 2 f x f x x x x x  +&PP2f :xx. (2.10) 

We have 

and hence (see Whitham 1974, 5 11) the variational equations for this Lagrangian are 

L = L ( Y  , f  , f t  ~ f X ~ f X X ~ f X X t  ~ f x x x ~ f x x x x L f x x x x t  ' f X X X X X ) ~  (2.1 1 a )  

L, = 0, 

By differentiating the first of (2.11 b)  and after some algebra, we obtain (2.5) and 
hence the full extended Korteweg-de Vries equation follows as before. 

2.2. Modulation equations and the simple wave solution 

The extended Korteweg-de Vries equation (2.8) has been derived for the special case 
of surface waves. If we had derived an extended Korteweg-de Vries equation for the 
more general case of waves in a density stratified fluid, then the equation would have 
had the same form as (2.8), but with different coefficients, i.e. 

Tt  + P1"TTX + P2 P T X X X  - T 2 T x  + aPc2 T x  T x x  + aPc3 T T X X X  + P2c* T x x z x x  = 0, 
(2.12) 

where p l ,  p2, el, c2, c3 and c4 are constants which depend on the density stratification 
(see (2.8) for surface waves). An equation of the form (2.12) was derived by Chow 
(1989) for the case of surface waves on a fluid with an underlying shear flow. The 
coefficients p1, p2, el, c2, C3 and c4 were given as the solutions of a set of boundary- 
value problems for ordinary differential equations, and were explicitly evaluated for 
the case of a linear shear flow. 

Some special cases occur, however, which change the form of (2.12). In  particular, 
if ,ul becomes small, i.e. p l  = O(an) where 0 < n d 1, then in order to match the 
leading-order nonlinearity and dispersion, we require P = O(an+l). Hence in this 
special case higher-order nonlinearity becomes more important than higher-order 
dispersion. Now, for surface waves the matching of leading-order nonlinearity and 
dispersion requires the usual scaling /3 = O(a). For the special case p l  = O(an) ,  
however, we retain only the cubic nonlinearity (which remains O(a2) ) ,  while the 
mixed nonlinear-dispersive terms, O(an+'), and higher-order dispersion, O(a2+2n),  are 
ignored as they are of higher order in a. This gives (after scaling) an extended 
Korteweg-de Vries equation containing only the higher-order nonlinear term 

Tt  + 677s + T x x x  -% T 2 T x  = 0, (2.13) 

where acl << 1 for 0 < n < 1 and acl = O(1) for n = 1 .  
While equation (2.13) is more limited in its applicability than (2.12), it is a valid 

approximation in a number of physical situations. Melville & Helfrich (1987) 
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implicitly assume ,8 = O(an+l) for n > 0 and derive a form of equation (2.13) for two- 
layer flow. They add topographic forcing to analyse the resonant or transcritical flow 
of a two-layer fluid over topography. This flow occurs when the basic flow speed is 
near a linear long-wave speed for one of the long-wave modes, so that energy cannot 
escape from the topographic forcing at the linear group velocity and nonlinear effects 
become important (indeed dominant) in the resulting flow. This flow will be further 
discussed in 93. Other examples of flows where (2.13) occurs are a fluid with uniform 
stratification in the absence of a basic shear flow in the Boussinesq approximation 
(Gear & Grimshaw 1983) and a two-layer fluid when the two depths are nearly the 
same (Long 1956 ; Kakutani & Yamasaki 1978 ; Helfrich, Melville & Miles 1984 ; Miles 
1979). For two-layer fluids, when the depths of the two layers are nearly the same, 
the scaling assumption is p = O(a2),  which causes the two nonlinear terms in (2.13) 
to be of the same order, i.e. ac, = O(1). 

Finding the modulation equations for (2.12) presents significant algebraic 
difficulties. However, on using a transformation presented below, the modulation 
equations for the extended Kortewegde Vries equation containing only the higher- 
order nonlinear term (2.13) can be easily found. This transformation involves 
transforming (2.13) to the Kortewegde Vries equation for ac, 4 1, from which the 
modulation equations follow from those of the Korteweg-de Vries equation found by 
Whitham (19653, 1974). It should be noted however that this transformation is not 
strictly valid for ox1 = 0(1), which reduces the value of comparisons of this theory 
with the results from cases where p = O(a2).  

If we let 

then qv is the solution of the Korteweg-de Vries equation (terms of O(a2)  being 
neglected), 

9vt  + 6% vvz + 9vzzz = 0. (2.15) 

This transformation only eliminates higher-order terms of the form q2rz and vzyz,, 
so the full extended Korteweg-de Vries equation (2.12) cannot be transformed to the 
Kortewegde Vries equation by this method. The modulation equations for the 
Korteweg-de Vries equation (2.15) are given by Whitham (1965b, 1974) as 

dx 4av(1 - m ) K ( m )  
dt 

on -- - u- 
E(m) - (1 -m)K(m) ’ 

dx 
dt -’+ mE(m) 

4av( 1 - m) K(m) 
on -- , 

(2.16) 
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where the phase speed U of cnoidal waves is 

and the wavenumber k is 

(2.17) 

(2.18) 

These equations form a third-order hyperbolic system of equations for the amplitude 
a,, mean height pV and modulus squared m of the modulated cnoidal wave 

(2.19) 

0 being the phase. K(m) and E(m)  are complete elliptic integrals of the first and 
second kind of modulus squared m respectively. 

The relationship between the wave amplitude a, and mean height p, and the wave 
amplitude a and mean height /3 of the extended Korteweg-de Vries equation (2.13) 
can be found from (2.19) and the transformation (2.14) to be 

(2.20) 

The phase speed U and wavenumber k of the modulated cnoidal wave solution of the 
extended Korteweg-de Vries equation (2.13) are given by (2.17) and (2.18) when p, 
and a, are replaced by /3 and a using (2.20). The periodic travelling-wave solution of 
the extended Korteweg-de Vries equation (2.13) follows upon substitution of the 
cnoidal wave solution (2.19) for the Korteweg-de Vries equation into the 
transformation (2.14). 

An alternative approach to deriving the modulation equations for the full 
extended Korteweg-de Vries equation (2.12) is to perturb the inverse scattering 
solution of the Korteweg-de Vries equation. Byatt-Smith (1987), using the results of 
Kaup & Newel1 (1978), constructed solutions of perturbed Korteweg-de Vries 
equations from the inverse scattering solution of the Korteweg-de Vries equation. 
This method could be applied to the modulation equations for the Korteweg-de Vries 
equation as derived using inverse scattering by Flaschka, Forest & McLaughlin 
(1980). 

One particular solution of the modulation equations (2.16) that can be easily found 
is the simple wave solution on the characteristic &. This solution was first found by 
Gurevich & Pitaevskii (1974) and Fornberg & Whitham (1978) and corresponds 
physically to an undular bore. This solution, which is unsteady, is referred to as an 
undular bore since it corresponds to a smoothing out of an initial step function. There 
are also models of undular bores which are steady owing to the effect of friction (see 
Whitham 1974, $13.15) which are not to be confused with the undular bores referred 
to in the present work. Using the relations (2.20), this undular bore solution can be 
easily extended to the extended Korteweg-de Vries equation (2.13). Using 
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FIQURE 1 (a, b). For caption see facing page. 

(2.16)-(2.18) and (2.20), the undular bore solution of (2.13) linking the levelA behind 
the bore to the level B ahead of the bore is then 

a = ( A  -B) m-;ac,(A -B)2m( 1 -m), 

p = 2B - A  + 2(A -B) 39 + ( A  -B)  m 
K(m) 

7c 
k = -(A -B$ [i -+c,(A + B ) ] ,  

K ( m )  
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1.6 

1.2 

0.8 

0.4 

- 

- 

- 

- 

U = 6B + 2(A -B) ( 1 + m) - $c1[3(2B -A)* 
+ 2 ( A - B )  ( 2 B - A ) ( 4 + m ) + 3 ( ~ 4 - B ) ~ ( 2 + m ) ] ,  

X 2 (A-B)m(l -m)K(m)  
t E(m) - (1 - m ) K ( m )  

on - = U -  [2-&x,(A+B)],  0 < m < 1, 

X 
~ ~ B - ~ A + ~ C , ( A ~ - ~ B ~ )  < 7 < ~ B + ~ A - ~ c , ( B ~ + ~ A ~ ) .  (2.21) 

The undular bore is a modulated cnoidal wavetrain which has solitons (m = 1) of 
amplitude 2(A--B) on a mean height B at the leading edge of the fan and sinusoidal 

FIGURE 1 .  (a)  The amplitude a of the undular bore versus x / t  for a jump from B = 0 to A = 1. 
Compared are ---, the extended Korteweg-de Vries equation for ac, = 0.2 and the -, the 
Korteweg-de Vries equation. Also shown for the same situation as (a) are (b )  mean height /I, 
(c) wavenumber k, and (d )  phase speed U. 
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waves of small amplitude on mean height A a t  the trailing edge of the fan. From 
(2.21) it can be seen that the leading edge of the extended undular bore moves slower 
(for c1 > 0) than the leading edge of the undular bore solution for the Korteweg-de 
Vries equation. The trailing edge of the extended undular bore moves faster than the 
trailing edge of the Korteweg-de Vries undular bore if IAl < 2/21B1 and slower if 

Figure l (a)  shows a comparison of the amplitude of the extended undular bore 
solution and the Korteweg-de Vries undular bore solution versus x / t  for a jump from 
B = 0 to A = 1. First, for this case the trailing edge of the extended undular bore has 
a smaller speed than the Korteweg-de Vries undular bore and the leading edge also 
has a smaller speed. Hence the extended undular bore spreads out more slowly than 
the Korteweg-de Vries undular bore. The amplitude of both bores goes from zero at  
the trailing edge to 1 at the leading edge. Hence because of the different positions of 
the trailing and leading edges, the amplitude of the extended undular bore is slightly 
lower near the trailing edge and slightly higher near the leading edge. Figure l ( b )  
shows a comparison of the mean heights for the same parameters as in figure 1 (a ) .  
Both of the mean heights go from 1 at the trailing edge to zero at  the leading edge. 
So the mean height of the extended undular bore is slightly higher near the trailing 
edge and slightly lower near the leading edge of the undular bore. Figures 1 (c) and 
1 (d )  show the wavenumber and phase speed comparisons. The extended undular bore 
wavenumber is 8% lower than the Korteweg-de Vries undular bore wavenumber 
throughout the undular bore and the phase speed of the extended undular bore is 
16% smaller than the phase speed of the Korteweg-de Vries undular bore 
throughout the bore. 

14 > d21BI. 

2.3. The extended cnoidal wave solution 
While the authors could not develop modulation theory for the full extended 
Korteweg-de Vries equation (2.12) due to the extreme algebra involved, the steady 
travelling-wave solution of (2.12) can be easily found. This solution can be termed 
the extended cnoidal wave solution. Here we present this solution (which has 
constant amplitude and modulus squared m) for the scaled extended Korteweg4e 
Vries equation 

7 t + 6 ? q Z + 7 Z Z 2 - a C I  q27]Z+ac2 7, r]ZZ+ac~7722Z+aC4 TZZZZZ = (2'22) 

The cnoidal wave solution of the Kortewegae Vries equation (the leading-order 
terms in (2.22)) is (see Whitham 1974) 

I 7l0 = d + A  cn2 (K(m) 19/n), 

where e = k x - W o t ,  

(2.23) 

wo = 6kd+2Ak(2-m-l) .  

This represents a cnoidal wavetrain of modulus squared m and amplitude 14. The 
arbitrary constant d affects the mean height of the wavetrain. The extended solution 
has the form 
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So w1 represents a correction to the dispersion relation and yo, y1 and y2 represent 
corrections to the amplitude and mean height. They are given by 

where 8 = kx--wt = k(x-Ut), 

k = (kr, 
0 (59m2 - 59m + 19) u= - = 2A(2-mm-’)+nA2 

(2.25) 

y2 = -$42 (3  Lc 1 + c2 + 2c3 - 3oc4) 9 

y1 = Ad& + c3) +A2(2 - m-1) (ic, +& +gc3 - 5c,), 
~1 = 6bO - C, kd2 - kA2( 1 - m-’) (g1 + g2 + 3c3 - 2 7 ~ ~ )  

+ 2c3 kdA (2 - m-l) + 4c4 kA2(2 - m-l ) ’. 
This extended cnoidal wave solution is equivalent to that of Laitone (1960) who 

derived an extended cnoidal wave solution for surface water waves directly from the 
water-wave equations (2.3). For surface water waves the constants in (2.22) are c1 = 

f, c2 = 4 ,  c 3 = 2 and cp = g. Hence our solution (for d = 0 and yo = 0) is 

i (2.26) 

(2.27) 

cn2(d)+Z(x) 3 a 2  cn4(cc~), 

where 

and the modulus k2 is m in our notation. To see the equivalence of these two 
expressions, (2.27) must be resealed, i.e. 

7k2-2 
h h  

Hence (2.27) becomes 

(2.28) 

Now (2.29) and (2.26) can be seen to be the same except that (2.29) is explicitly scaled 
by h, the water depth, while (2.26) is implicitly scaled by h. The second-order 
expressions for wave speed cannot be explicitly compared because Laitone’s solution 
is in a moving frame of reference, his z velocity u(z,  y) is the sum of the wavespeed 
and the fluid velocity. The constant part of u(z,y)  (see his (4.18)) is not quite the 
wavespeed as it contains terms such as the Stokes’ drift. If u(z,  y) is calculated from 
(2.4) and (2.7) then Laitone’s (4.18) is obtained. 
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3. Resonant flow over topography 
Consider the two-dimensional flow of a stratified fluid over a localized topography. 

The flow will be described by a horizontal coordinate X ,  a vertical coordinate z and 
a time T ,  where these coordinates have been non-dimensionalized by a lengthscale h,, 
a typical vertical dimension and a timescale N;l ,  Nl being a typical value of the 
Brunt-Viiisala frequency. Let us assume that the basic flow state has a constant 
horizontal velocity of magnitude V in the X-direction, a non-dimensional density 
p,(z) (non-dimensionalized by a typical density) and a non-dimensional pressure 
po(z ) ,  where po, = - p o .  The topography is given by 

where a = a/L ,  /3 = (h,/L)2, a being a typical amplitude of the topography and L a 
typical horizontal lengthscale. The topography is assumed to be localized, so that 
g -+ 0 asX -+ 00. The flow will be considered in the weakly nonlinear, long-wave limit ; 
hence a -4 1,  p -4 1. We shall further restrict the flow to the particular case when the 
imposed upstream flow velocity is near a linear long-wave velocity for the fluid. In 
this case, linear theory predicts a singular solution as energy cannot propagate away 
from the topography. By including the bottom topography (3.1) into the derivation 
of the extended Korteweg-de Vries equation (see $2, the velocity potential (2.4) must 
be modified to allow for the boundary condition (3.1)), it can be shown in a similar 
manner to Melville & Helfrich (1987) (for two-layer flow) and Akylas (1984), Cole 
(1985), Lee (1985) and Grimshaw & Smyth (1986) for the forced Korteweg-de Vries 
equation that the equation governing this flow is the forced extended Korteweg-de 
Vries equation 

T. R. Marchant and N. F .  Smyth 

z = -h+ apG(@X), (3.1) 

- ut - Au, + 6uu, 4- u,,, - ac, u'u, 4- ac, u, u,, +- ac, uu,,, +- ac4 u,,,,, 
+ ac5 Gy, + acay G, + ac, G,,, + ( 1  + acs A )  G,(x) = 0. (3.2) 

u(z,O) = 0 (3.3) 

In the present work, the initial condition 

will be used, which corresponds to switching on the forcing at  t = 0. Equation (3.2) 
represents a balance between nonlinearity and dispersion, which, since the flow is 
resonant and produces a response of O(ai), requires p = af. The functions u and G(x) ,  
the detuning parameter A and the coordinates x and t are related to the physical 
vertical displacement Y ,  the physical bottom topography, the imposed upstream 
flow velocity and the physical horizontal space and time coordinates by 

t = hc,/?MT, x = @X, 
I 6h 

Y = az-u#,(z), 
P (3.4) 

where #,(z) is the modal function, c ,  the linear phase speed for the resonantly forced 
long-wave mode and I,,,p,h,c1, ..., c8 are given by integrals of #a (see Gear & 
Grimshaw 1983; Grimshaw & Smyth 1986; Melville & Helfrich 1987), the values of 
which will be quoted for specific stratifications later. Equation (3.2) also describes the 
flow produced by a two-dimensional force, such as a moving pressure distribution on 
the surface of a fluid of constant density (see Akylas 1984; Cole 1985; Lee 1985; Wu 
1987 ; Lee et al. 1989). In this case, the function G ( z )  is given by an expression similar 
to that in (3.4) which involves this force. 
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FIGURE 2. Numerical solution 7 of the forced extended Korteweg-de Vries equation 
for ac, = 0.2, ac8 = 0.05, A = 0, go = 1 at time intervals of 4 up to t = 20. 
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As in Grimshaw & Smyth (1986) and Smyth (1987, 1988) it is assumed that the 
forcing function G(x)  is of the form 

G ( x )  = goG(x ' )  (x' = [x ) ,  (3.5) 
where the function G' is taken to have the following properties : G ( x ' )  2 0 for all x', 
G has a maximum value of 1 at x' = 0 and G' --f 0 as x' -f & 00. The parameter 5 
measures the lengthscale of the forcing. 

Numerical solutions of (3.2) are obtained using the pseudospectral method of 
Fornberg & Whitham (1978) (see their $2). In this method U ( X ,  t )  is transformed into 
discrete Fourier space with respect to x (i.e. F ( u ) )  and derivatives with respect to x 
appear as discrete Fourier transforms as well. We use the same definitions as 
Fornberg & Whitham (see their (7) and (8)) and obtain the following differenced 
version of (3.2) 

u(z,  t-dt)-u(x,t+dt)+2idtF-1(vF(u))(6u-A-ac,u2+ac5G)-ac2F-1(~2F(~))) 

-2W1(sin (v3ddt)F(u))(1 +ac3u)+2ac,F-'(sin (v5ddt)F(u)) 

(3.6) 
where the discrete inverse transform is a summation over the wavenumbers v 
(compare this with (10) in Fornberg & Whitham). The forcing function used is 

(3.7) 

+ 2 dt G,( 1 + acs A )  + 2 dt ac, G,., = 0, 

G = go sech2 cx. 

It was shown by Grimshaw & Smyth (1986) and Smyth (1987) that for broad forcings 
(6 small), the solution of (3.2) depends only on the value of go and not on the 
particular shape of the forcing function G. 

Using the method of Smyth (1987), the solution of (3.2) for the particular case 
when only higher-order nonlinearity is present (i.e. c2 = cg = c4 = c5 = c6 = c, = 0) 
will now be found. This equation is 

(3.8) -ut - Au, + ~ U U ,  + uzZz -OX, U'U, + ( 1  +OX, A )  G, = 0. 

- 

- 

- 

- 

- 

- 
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A numerical solution of this equation for A = 0 ,  go = 1, acl = 0.2 and acs = 0.05 
(this ratio of c1 and cg represents surface water waves) a t  time intervals of 4 is shown 
in figure 2 ,  When the forcing is switched on, the surface elevation is zero. As time goes 
on, three distinct solution regions develop ; a modulated, unsteady wavetrain 
upstream of the forcing, an essentially flat depression downstream of the forcing and 
a modulated wavetrain following this depression, which brings the solution back to 
zero. Smyth (1987) used the modulation equations for the Korteweg-de Vries 
equation to find the solution of the forced Korteweg-de Vries equation. These 
modulation equations can be used as the forcing is localized and hence G is non-zero 
only in some finite region. It was shown that the upstream wavetrain for the forced 
Korteweg-de Vries equation consisted of a partial undular bore with modulus 
squared m in the range 0 < m, < m < 1 and which had zero mean height a t  its 
leading edge. The lower modulus m, was chosen so that all the characteristics of the 
simple wave propagated upstream (away from the forcing). The downstream 
wavetrain was shown to be a full undular bore with zero mean height a t  its leading 
edge. These solutions will be extended to (3.8) by using the full undular bore solution 
(2 .21 )  on setting x to -x to take account of the change of sign of ut in (3.8).  

Setting B = 0 in (2 .21 ) ,  the wavetrain upstream of the forcing is given by 

1 a = Am-&zclA2m(l - m ) ,  

(3.9) 

X 

t 
2Am( 1 - m )  K(m)  

E(m) - (1 - m )  K(m) 
where - = A-A(1+m)(2-~8aclA)+ ( 2  - gCLcl A ) ,  

r n , < m < l .  1 
For this wavetrain to propagate only upstream, the minimum modulus squared m, 
is chosen so that all the characteristics Q of the expansion fan propagate upstream. 
Hence m, is the solution of 

Similarly, setting A = 0 in (2 .21 ) ,  the wavetrain downstream of the forcing is given 
by 

\ a = IBIm-QaclB2m(l-m), 

1 (3.11) 

I X 2Bm( 1 - m )  K ( m )  
t 

where - = A - 4 2 3 + 2 B m + ~ ~ ~ c , B ~ [ 2 - m ] -  [2-4ac1B] 
E(m) - (1 -m) K ( m )  

I 2 
0 < m < 1 ,  A-2B+$xclB2 Q - Q A-12B+2ac,B2. 

t 
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For this wavetrain to propagate downstream, we require B < 0. 
The solutions (3.9) and (3.11) for the upstream and downstream wavetrains are not 

complete as the values ofA and B have not yet been determined. It is the parameters 
A and B which link the upstream and downstream wavetrains to the forcing. The 
solutions (3.9) and (3.11) were determined from the modulation equations for the 
extended Korteweg-de Vries equation and hence do not contain any direct 
information about the forcing. Smyth (1987) obtained approximations to A and B 
which yielded solutions in good agreement with numerical solutions of the forced 
Korteweg-de Vries equation. These approximations will be extended here to the 
forced extended Korteweg-de Vries equation. Full details of this method can be found 
in Smyth (1987). 

The simple wave solutions (3.9) and (3.11) have reduced the forcing to a 
discontinuity at z = 0. To link the upstream and downstream solutions, a jump 
condition across the forcing needs to be found. This jump condition will link the 
mean levels just upstream and just downstream of the forcing and is determined by 
the steady solution of (3.8) which approaches constants as Z++ 00. To match with 
the upstream and downstream solutions, the constant as x+- co must be positive 
and the constant as Z+ co must be negative. The steady solution is the solution of 

- du, + ~ U U ,  -OX, U'U, + u,,, + (1  + OX, d )  G,(x) = 0. (3.12) 

I n  general, this equation is difficult to solve, but it can easily be solved in two limits; 
a broad forcing for which 

For a broad forcing, the dispersive term u,,, in (3.12) can be neglected. It can then 
be found that the steady solution which approaches the appropriately signed 
constants as z -+ k co and is continuous a t  x = 0 is 

is small and a &-function forcing, for which 5 is large. 

I i[d+(i + ~ ~ ~ ~ d ) ( 1 2 ( g ~ - G ) ) ~ ] + ~ ~ ~ , [ ~ ~ + ~ ( l 2 ( g ~ - G ) ) ~ + 4 ( g ~ - ~ ) ]  (5 < O ) ,  
u s = {  :[A - (1 +$OX, d )  ( 1 2 ( g 0 - G ) ) ~ ] + ~ ~ ~ , [ d 2 - A ( 1 2 ( g 0 - G ) ) ~ + 4 ( ~ , - G ) ]  (Z 2 0). 

(3.13) 

HenceuS~Q[d+(1+~c ,d) (12go)~]+~ac , [A2+d(12go)~+4go]  as x+--oo, (3.14) 
and us -+ $[A - (1 +iac, d )  ( 12go)i] +~acl [d2-d(12go)~+4go]  as z-+ + co. (3.15) 

For us to approach a positive constant as x - f -  co and a negative constant as x+ 
co, we require 

- ( 12g0)4 + 6ac, go - iacl go < A < ( 12g0)i + 6ac, go - )ac, go. (3.16) 
This range of A is the band for which resonant flow, characterized by a large, 
unsteady upstream wavetrain, occurs. Outside of this range, the flow is non-resonant 
and is qualitatively similar to the classical linear solution (see Grimshaw & Smyth 
1986). As we are concerned with the resonant solution in the present work, the non- 
resonant solution will not. be considered further. 

The limiting value (3.14) provides the initial mean height for the upstream solution 
(3.9). The parameter A and the modulus squared m, a t  the forcing are then the 
solution of 

Q[A+ (1 +$ac,d) (12go)t] +&ac,[d*+d(12go)~+4go] 

= 2A E 0 - A  +Am, + &ac,A2) 3mi - 5m0 + 2(2m0 - 1) 
K(m0) 

together with (3.10). Using the fact that a is small, we find from this that 

A = Ao+aA, ,  (3.18) 
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where 

(3.19) 

The minimum modulus squared m, is determined by (3.10) on using the expression 
(3.18) for A and the solution for the upstream wavetrain is now complete. 

As well as fully resonant flow in which waves are continually generated a t  the 
forcing, the solution (3.9), (3.10) and (3.18) also gives the transition to  subcritical 
flow. When 

A = -a( 12g,)f + $%c* go + &ac, go, (3.20) 

mo = 0 and the upstream wavetrain is a full undular bore. For A in the range 

- (129,)f + 6ac, 9, - iac, 9, < A < - ;( 12g,)i + #ac8 go + &a1 go, (3.21) 

m, = 0 and the upstream solution is a full undular bore which propagates upstream. 
So in this range of A ,  no waves are generated at the forcing. After the bore has passed, 
there is a non-zero mean level in u (which is positive). The upstream solution for A 
in the range (3.21) is a transition solution from fully resonant flow, in which waves 
are continually generated a t  the forcing, to non-resonant subcritical flow in which 
there is no upstream disturbance. 

Similarly, matching the mean level of the downstream solution (3.11) at its trailing 
edge, where m = 1, to  the limiting value (3.15) gives 

B = Q[A - ( 1 + ;ac, A )  ( 12g0)t] + &ac,[A2 + 4g, - A ( 12g,)q, (3.22) 

which completes the downstream solution. Between the trailing edge of the 
downstream wavetrain and the forcing, the solution is (3.13) for x 2 0. 

If for A in the range 

- (12go)t + ~ C Z C ,  go - & c ~  go < A < - &( 12g0)4 + $z.c, go - &acl go, (3.23) 

m is allowed to take all values 0 < m < 1, then part of the expansion fan will 
propagate upstream. For A = -a( 129,)a + :ac, go - &acl go, the solution a t  the trailing 
edge of the expansion fan has zero velocity. For A in the range (3.23), the expansion 
fan (3.11) could be stopped a t  a value of m for which the trailing characteristic has 
zero velocity, as was done for the upstream solution. However, as A decreases, the 
solution must merge with the non-resonant solution, which has a stationary lee 
wavetrain downstream of the forcing. A restricted expansion fan will not do this as 
the phase velocity at the forcing does not approach zero as the lower limit in (3.23) 
is approached. Also the numerical results of Grimshaw & Smyth (1986) for the forced 
Korteweg-de Vries equation show that for A < -&(12g,)f, a stationary lee wavetrain 
preceded by a transient front develops downstream of the forcing. The downst,ream 
solution for A in the range (3.23) will then consist of a stationary wavetrain of 
modulus m, proceeded by an expansion fan of the form (3.11) in which the modulus 
varies in the range m, 2 m >, 0. 
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Matching between the stationary lee wavetrain and the expansion fan (3.11) gives 
b, and a, for the lee wavetrain as 

= ;[A - (1 +$c, A )  ( 12go)i] +&cc,[A~ +4g0--d( 12g,)i], (3.24) 

a, = IBI m, - Qczc, B2m,( 1 - m,) ,  (3.25) 

From the expression given in (2.17) for the phase velocity U, we find that for this 
velocity to be zero in the lee wavetrain, we require 

m! +m, - 2  +2(2 -ml)--" E(m '1. (3.26) 
K ( m , )  

ucl A 2  -_ A 
B =  

2(2-m,)  24 (2 -mJ3 

The modulus squared m, and the parameter B are then the solution of (3.24) and 
(3.26). From (3.11), the wavenumber of the lee wavetrain is 

(3.27) 

The lee wavetrain downstream of the forcing for A in the range (3.23) is then given 
by (3.24), (3.25) and (3.27). From (3.11), this lee wavetrain occurs in the range 

(3.28) 

Ahead of this lee wavetrain, there is an expansion fan given by (3 ,11) ,  but with m in 
the range 0 < m < m,. This expansion fan is a transient front which brings the 
solution back to zero from the lee wavetrain. The solution in the range (3.23) is the 
nonlinear counterpart of the linear subcritical solution which has a stationary 
(linear) lee wavetrain preceded by a transient wavetrain. 

In  the case of the forced Korteweg-de Vries equation (cl = c ,  = O ) ,  both the 
upstream and downstream wavetrains undergo transition to the non-resonant 
solution a t  the same value of A (see (3.21) and (3.23)). However, for the forced 
extended Korteweg-de Vries equation, the upstream solution starts the transition to 
the non-resonant solution at a higher value of A than the downstream solution. 

We see from (3.9) that the waves a t  the leading edge of the upstream wavetrain 
are solitons (m = 1). The amplitude of these solitons is given by (3.9), (3.10), (3.18) 
and (3.19). Figure 3 ( a )  shows a comparison of the upstream soliton amplitudes as 
predicted from modulation theory for the forced extended Korteweg-de Vries and 
forced Korteweg-de Vries equations over the range of the detuning parameter, A ,  for 
which the solution is resonant. In this example go = 1, me1 = 0.2 and ac, = 0.05 
(which represents surface water waves). For negative delta (where the fluid velocity 
is less than the linear wave speed), the soliton amplitudes are very similar. However, 
for positive delta (where the fluid velocity is greater than the linear wave speed) there 
is more variation with the soliton amplitude corresponding to the extended 
Korteweg-de Vries theory being greater than that of the Korteweg-de Vries theory. 

Figure 3 ( 6 )  shows a comparison of the modulus squared, m, (given by (3.10)), at 
which the upstream cnoidal wavetrain begins between the predictions of modulation 
theory for the forced extended Korteweg-de Vries and forced Korteweg-de Vries 
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FIGURE 3. (a) The upstream soliton amplitude from modulation theory for resonant flow over 
topography versus the detuning parameter A. Compared are ---, the forced extended Korteweg-de 
Vries equation for ac, = 0.2 and acg = 0.05 and -, the forced Korteweg-de Vries equation. Also 
shown for the same situation as (a) is (b) the modulus squared, m,,, at whioh the upstream wavetrain 
begins and ( c )  the downstream soliton amplitude. 
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FIGURE 4. The numerical solution 7 of the forced extended Korteweg-de Vries equation for 
resonant flow over topography for ac, = 0.2, acg = 0.05, go = 1, A = 0 and t = 20. Also shown is the 
wave envelope for the upstream and downstream cnoidal wavetrains from extended modulation 
theory. 
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FIGURE 5. Comparison of the numerical solutions 9 of ---, forced extended Korteweg-de Vries 
equation and -, the forced Korteweg-de Vries equation for resonant flow over topography. The 
parameters are go = 1, ac, = 0.2, acg = 0.05, A = 1.0 and t = 20. 

equations. The parameters are the same as for figure 3(a ) .  For negative delta the 
modulus squared m, as given by the extended Korteweg-de Vries theory is less than 
that of Korteweg-de Vries theory. For positive delta the modulus squared m, of the 
extended Kortewegde Vries theory is similar to that of Korteweg-de Vries theory, 
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FIGURE 6. Comparison of the numerical solutions 9 of ---, the forced full extended Korteweg-de 
Vries equation and -, the forced Korteweg-de Vries equation for resonant flow over 
topography. The parameters are go = 1, ac, = 0.15, A = 0 and t = 20. 

At delta equal to zero (when the fluid velocity is equal to the linear phase velocity), 
the modulus squared m, as predicted by both theories is the same. 

The downstream undular bore solution (3.11) has solitons (m = 1) at its trailing 
edge. Figure 3 (c) shows a comparison of the downstream soliton amplitudes for the 
same situation as figures 3(a) and 3(b). For negative delta the downstream soliton 
amplitude as predicted by extended Korteweg-de Vries theory is smaller than the 
Korteweg-de Vries theory while for positive delta the downstream soliton amplitude 
as predicted by extended Korteweg-de Vries theory is greater than Korteweg-de 
Vries theory. 

We shall now present some results of the numerical solution of (2.13), the extended 
Korteweg-de Vries equation with only the higher-order nonlinearity present and of 
(2.12), the full extended Korteweg-de Vries equation for surface water waves (the 
higher-order coefficients are given by (2.8)). The numerical solutions are calculated 
using the pseudospectral method of Fornberg & Whitham (1978) (see (3.6)). The 
forcing used is a broad obstacle with G(z) = g,sech2 (z). 

Figure 4 shows the numerical solution of the forced extended Kortewegde Vries 
equation for A = 0, go = 1, ac, = 0.2, crc, = 0.05 and time = 20. Also drawn are the 
wave envelopes of the upstream and downstream cnoidal wavetrains as predicted by 
modulation theory for the forced extended Korteweg-de Vries equation. These wave 
envelopes are p+a with pgiven by (3.9) and (3.11) for the upstream and downstream 
wavetrains respectively. The agreement between theory and numerical results is 
excellent with some slight disagreement in the region of the obstacle. 

The difference between the numerical solutions of the forced extended Korteweg- 
de Vries equation and the forced Korteweg-de Vries equation is slight (and 
barely discernible graphically) for A near zero, but increases as A increases. Figure 
5 shows a comparison between the numerical solutions of the forced extended 
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Korteweg-de Vries equation and the forced Korteweg-de Vries equation for go = 1, 
ac, = 0.2, ac, = 0.05, t = 20 and A = 1.0. The solution of the extended equation 
shows some discernible changes. First, the amplitude of the leading edge of the 
upstream wavetrain (the lead soliton) is slightly higher than the Korteweg-de Vries 
amplitude. Also the waves are travelling slightly faster upstream. This difference in 
wavetrain properties is in agreement with the predictions of modulation theory. 
Figure 3 (a )  shows that the upstream soliton amplitude is increased while (3.9) gives 
the velocity of each cnoidal wave in the upstream undular bore. In  particular, the 
lead soliton's velocity is 

U = A - 4Ao + $ZC, A: -44aA1, (3.29) 

where A o , A ,  are defined in (3.19). Because A ,  is positive (figure 3 (a )  shows that the 
upstream soliton amplitude is increased for positive A )  and larger than the. other 
higher-order term, this represents a faster velocity (upstream) than for a 
Korteweg-de Vries soliton. Downstream the wave amplitude is increased (see figure 
3(c) for positive A )  and the waves are travelling faster. 

Figure 6 shows a comparison between the numerical solutions for the forced full 
extended Kortewegde Vries equation for surface water waves and the forced 
Korteweg-de Vries equation for go = 1,  acl = 0.15, t = 20 and A = 0. For surface 
water waves c ,  = 1, c, = 7, c3 = g, cp = g, cg = -$, c6 = -1 6, c , = O  and c 8 = a .  
Upstream, the solution of the full extended Korteweg-de Vries equation shows two 
main differences with the Korteweg-de Vries solution. First, there is an amplitude 
reduction and. in addition, the upstream undular bore is travelling slower. 
Downstream, the waves are travelling more slowly also, while little change in the 
downstream undular bore amplitude has occurred. The higher-order nonlinear- 
dispersive and higher-order dispersive terms in (2.12) then have more effect on the 
resonant flow solution than the higher-order nonlinear term, although the effect of 
none of the higher-order terms is very great until the wave amplitudes become fairly 
large. 

4. Comparison with experiment 
In  this section we compare the results from modulation theory for the extended 

Kortewegde Vries equation and some numerical results for the forced extended 
Korteweg-de Vries equation with boundary-layer viscosity included (see Smyth 
1988) with some numerical and experimental results obtained by Melville & Helfrich 
(1987). They considered two-layer resonant flow over topography and derived a 
forced extended Korteweg-de Vries equation for this two-layer fluid which included 
the higher-order cubic nonlinearity, but not the higher-order dispersion. Experi- 
mental and numerical results were obtained for a range of parameters. Here we 
rescale their forced extended Korteweg-de Vries equation (2.12) derived for a two- 
layer fluid to our (3.8), with c8 = 0, and compare their results with our modulation 
theory for the forced extended Korteweg-de Vries equation and the forced 
Kortewegde Vries equation. Smyth (1988) considered the effect of boundary-layer 
viscosity on resonant flow (see his (2.12)). Extending his (2.12) to include the cubic 
nonlinearity also, we have that the forced extended Korteweg-de Vries equation 
including boundary-layer viscosity is 

- ~ t  - Au, + ~ U U ,  + u,,, - OX, U'U, + G, - SV(u) = 0, (4.1) 

10 FLM 221 
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FIQURE 7. The downstream soliton amplitude for resonant flow over topography versus A .  
Modulation theory for -, the forced Korteweg-de Vries equation and ---, the extended forced 
Korteweg-de Vries equation for ac, = 12. Melville & Helfrich's numerical results (0, their figure 
10 and 0, their figure 5) and their experimental results (+ , from figure 10 and A, from figure 5). 
Also shown are x , numerical solutions of the forced extended Korteweg-de Vries equation for 
ac, = 12 with boundary-layer viscosity 6 = 0.00, 

where I 
a 

V(u) = ( -ik)$eik2F(u) dk, 
27c -Q 

For a two-layer fluid of lower-layer density pz, upper-layer density pl ,  lower-layer 
depth d and total depth h, the parameter S is given by 

Y being the (non-dimensionalized) kinematic viscosity (see Leone, Segur & Hammack 
1982 ; Grimshaw 1983). The densities are non-dimensionalized by the mean density 
of the two fluids and the depths are non-dimensionalized by the product of the depths 
of the two layers divided by the total depth. Solutions of the equation are compared 
with those of Melville & Helfrich (1987). For the results presented by Melville & 
Helfrich, our small parameter ac, ranges between approximately 4 and 14. 

Hence comparison between the numerical and theoretical results is of limited 
value, as the extended Kortewegde Vries equation is derived under the assumption 
that ac, < 1. There are some interesting features of the solution however and these 
are shown in figure 7. 

Figure 7 shows the downstream soliton amplitude over the range of d for which the 
flow is resonant. Shown are the modulation theory results for the forced Kortewegae 
Vries equation and the forced extended Kortewegde Vries equation for acl = 12, 
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FIGURE 8. Compmison of the numerical solutions of ---, the forced extended Korteweg-de Vries 
equation and -, the foroed Korteweg-de Vries equation for resonant flow over topography. Also 
included is boundary-layer viscosity. The parameters are go = 1 ,  acl = 12, A = -0.72,6 = 0.06 and 
t = 20. 

Melville & Helfrich’s numerical results for the Korteweg-de Vries equation (their 
figure lo), and their numerical solutions for the extended Korteweg-de Vries 
equation with ac, 13, and their experimental results (their figure 10 with acl R!. 12, 
and figure 5 with ac, x 13). Also shown are numerical solutions for (4.1)’ the forced 
extended Korteweg4e Vries equation with boundary-layer viscosity (ac, x 12 and 
6 w 0.06, where 8 was calculated from Melville & Helfrich’s experimental data). 

First, this figure shows very good agreement between the modulation theory 
solution for the forced Korteweg-de Vries equation and Melville & Helfrich’s 
numerical forced Korteweg-de Vries results. Comparison of the results for the forced 
extended Korteweg-de Vries equation is only fair, but this is to be expected since the 
theory is being applied for values of acl well outside its validity. All of the 
experimental results show amplitudes much smaller than any of Melville & Helfrich’s 
numerical solutions or the results from modulation theory. However once boundary- 
layer viscosity is included in the forced extended Korteweg-de Vries equation, much 
better agreement is obtained with experiment. For d 2 0 very good agreement is 
obtained, while for d = -0.76 the agreement is not as good, with the numerical result 
much greater than the experimental value. There are a number of possible reasons 
for this: (a) the neglected higher-order dispersive terms may be more important for 
d negative ; (b) the theory is less valid as the amplitude increases ; or (c) the solitons 
may be breaking (solitons break at  amplitudes of about 0.7 which is the order of the 
soliton amplitude at A = -0.75). 

Figure 8 shows a comparison of the numerical solutions of the forced extended 
Korteweg-de Vries equation (ac, = 12) and the forced Korteweg-de Vries equation. 
Both equations include boundary-layer viscosity, 6 = 0.06. There are significant 
qualitative differences in the solutions. Upstream, the Korteweg-de Vries solution is 
a modulated cnoidrtl wavetrain, while the extended Korteweg-de Vries solution is a 

10-2 
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Forced Korteweg-de Vries Forced extended Korteweg-de Vries 
equation equation (acl = 6) 

Modulation theory 
Numerical solutions 

- 1.73 < A < 3.46 
-2.26 < A < 4.53 

- 1.56 < A < 2.8 
- 1.69 < A < 3.37 

TABLE 1. Comparison of resonant bands with numerical solutions of Melville Q Helfrich (1987) 
(their figures 3 and 8) 

non-dissipative bore described by a ‘ tanh’ profile (see Melville & Helfrich (2.18a) for 
more details). Downstream, the extended Korteweg-de Vries solution has a shallower 
and longer flat depression immediately behind the obstable, while the downstream 
modulated cnoidal wavetrains are of similar amplitude. 

In  conclusion, the combination of the cubic nonlinearity and boundary-layer 
viscosity results in good agreement with experiment. However, care must be 
exercised in making definite conclusions as acl is outside the range of validity of the 
extended Korteweg-de Vries equation, and (see the non-dissipative bore in figure 8) 
the effect of friction can cause solutions not described by modulation theory to 
develop. 

Another point of interest is the size of the resonant bands. In  table 1, we compare 
the resonant band of the modulation theory for the forced Korteweg-de Vries 
equation and for the forced extended Korteweg-de Vries equation (for a broad 
obstacle) for acl = 6. Also given are the resonant bands from Melville & Helfrich’s 
numerical solutions of the forced Korteweg-de Vries equation and the forced 
extended Korteweg-de Vries equation. Comparison between modulation theory for 
the forced Korteweg-de Vries equation and Melville & Helfrich’s numerical results 
shows a 23 YO difference in both the upper and lower band limits. Modulation theory 
for the forced extended Korteweg-de Vries equation gives better agreement with the 
numerical results. The lower band limit shows a 7 YO difference between modulation 
theory and the numerical results while the upper band limit shows a 16% variation. 
Again, good agreement between the theoretical and numerical results was not 
expected as ac, is not + 1. 

T. R. M. would like to acknowledge support from the Australian Research Council 
under Grant A 48716128. 

R E F E R E N C E S  

AKYLAS, T. R. 1984 On the excitation of long nonlinear water waves by a moving pressure 

BAINES, P. G. 1984 A unified description of two-layer flow over topography. J .  Fluid Mech. 146, 

BYATT-SMITH, J .  G. B. 1987 Perturbation theory for approximately integrable partial differential 
equations, and the change of amplitude of solitary-wave solutions of the BBM equation. 
J .  Fluid Mech. 182, 467-483. 

CHOW, K. W. 1989 A second order solution for the solitary wave in a rotational flow. Phys. Fluids 
A 1(7), 12351239. 

COLE, S. L. 1985 Transient waves produced by flow past a bump. Wave Motion 7, 57Wj87. 
FLASCHKA, H., FOREST, M. G. & MCLAUOHLIN, D. W. 1980 Multiphase averaging and the inverse 

spectral solution of the Korteweg-de Vries equation. Commun. Pure AppE. Maths 33, 73S784. 
FORNBERQ, B. & WHITHAM, G. B. 1978 A numerical and theoretical study of certain nonlinear 

wave phenomena. Phil. Trans. R.  SOC. Lo&. A 289, 373404. 

distribution. J .  Fluid Mech. 141, 455466. 

127-1 67. 



Extended Korteweg-de Vries equation and the resonant flow of a Jluid 287 

GEAR, J. & GRIMSHAW, R. 1983 A second order theory for solitary waves in shallow fluids. Phys. 
Fluids 26, 14-29. 

GRIMSHAW, R. H. J. 1983 Solitary waves in density stratified fluids. In Nonlinear Deformation 
Waves, IUTAM Symp., Tallinn, 1982 (ed. U. Nigel & J. Engelbrecht), pp. 431447. Springer. 

GRIMSHAW, R. H. J. & SMYTH, N. F. 1986 Resonant flow of a stratified fluid over topography. 
J .  Fluid Mech. 169, 429464. 

GUREVICH, A. V. & PITAEVSKII, L. P. 1974 Nonstationary structure of a collisionless shock wave. 
Sov. Phys., J .  Exp. Theor. Phys. 38, 291-297. 

HELFRICH, K. R.,  MELVILLE, W. K. & MILES, J. W. 1984 On interfacial solitary waves over slowly 
varying topography. J .  Fluid Mech. 149, 305-317. 

HUANG, D.-B., SIBEL, G. J.,  WEBSTER, W. C., WEHAUSEN, J. V., Wu, D.-M. & Wu, T. Y. 1982 
Ships moving in the transcritical range. In  Proc. Conf. on Behaviour of Ships in Restricted 
Waters, Varm,  vol. 2, pp. 26-1-26-10. 

KAKUTANI, T. & YAMASAKI, N. 1978 Solitary waves on a two-layer fluid. J .  Phys. SOC. Japan 45, 
674479. 

KAUP, D. J. & NEWELL, A. C. 1978 Solitons as particles, oscillators, and in slowly changing 
media: a singular perturbation theory. Proc. R. Soc. Lond. A 361, 413446. 

LAITONE, E. V. 1960 The second approximation to cnoidal and solitary waves. J .  Fluid Mech. 9, 
4 3 M 4 4 .  

LEE, S.-J. 1985 Generation of long water waves by moving disturbances. PhD thesis, California 
Institute of Technology. 

LEE, S.-J., YATES, G. T. & Wu, T. Y. 1989 Experiments and analysis of upstream advancing 
solitary waves generated by moving disturbances. J .  Fluid Mech. 199, 569-593. 

LEONE, C., SEGUR, H. & HAMMACK, J. L. 1982 Viscous decay of long internal solitary waves. Phys. 

LONG, R. R. 1956 Solitary waves in one- and two-fluid systems. Tellus 8, pp. 4 6 M 7 1 .  
LUKE, J. C. 1967 A variational principle for a fluid with a free surface. J .  Fluid Mech. 27,395-397. 
MELVILLE, W. K. & HELFRICH, K. R. 1987 Transcritical two-layer flow over topography. J .  Fluid 

MILES, J. W. 1979 On internal solitary waves. TeZZus 31, 45-62. 
SMYTH, N. F. 1987 Modulation theory solution for resonant flow over topography. Proc. R. SOC. 

SMYTH, N. F. 1988 Dissipative effects on the resonant flow of a stratified fluid over topography. 

WHITHAM, G. B. 1965a A general approach to linear and nonlinear dispersive waves using a 

WHITHAM, G. B. 19653 Non-linear dispersive waves. PTOC. R. SOC. Lond. A 283, 238-261. 
WHITHAM, G. B. 1967 Variational methods and applications to water waves. Proc. R. SOC. Lond. 

WHITHAM, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience. 
Wu, D. M. & Wu, T. Y. 1982 Three-dimensional nonlinear long waves due to moving surface 

pressure. In Proc. 14th Symp. on Naval Hydrodynamics, Ann Arbor. 
Wu, T. Y. 1987 Generation of upstream advancing solitons by moving disturbances. J .  Fluid 

Fluids 25, 942-944. 

Mech. 178, 31-52. 

LO&. A 409, 79-97. 

J .  Fluid Mech. 192, 287-312. 

Lagrangian. J .  Fluid Mech. 22, 273-283. 

A 299, G25.  

M e h .  184, 75-99. 




